Applied Engineering Mathematics
- Type:
- Other > E-books
- Files:
- 1
- Size:
- 3.91 MB
- Texted language(s):
- English
- Tag(s):
- Engineering Mathematics
- Uploaded:
- Feb 17, 2013
- By:
- CHISPO
This book endeavours to strike a balance between mathematical and numerical coverage of a wide range of mathematical methods and numerical techniques. It strives to provide an introduction, especially for undergraduates and graduates, to engineering mathematics and its applications. Topics include advanced calculus, ordinary differential equations, partial differential equations, vector and tensor analysis, calculus of variations, integral equations, the finit difference method, reaction-diffusion system, and probability and statistics. The book also emphasizes the application of important mathematical methods with dozens of worked examples. The applied topics include elasticity, harmonic motion, chaos, kinematics, pattern formation and hypothesis testing. The book can serve as a textbook in engineering mathematics, mathematical modelling and scientific computing. 1 Calculus 1 1.1 Differentiations ....... 1 1.1.1 Definition . . . . . . 1 1.1.2 Differentiation Rules 2 1.1.3 In1plicit Differentiation . 4 1.2 Integrations . . . . . . . . . 5 1.2.1 Definition ........ 5 1.2.2 Integration by Parts .. 6 1.2.3 Taylor Series and Power Series 8 1.3 Partial Differentiation ........ 9 1.3.1 Partial Differentiation .... 9 1.3.2 Differentiation of an Integral 12 1.4 Multiple Integrals ..... 12 1.4.1 l1ultiple Integrals 12 1.4.2 Jacobian ...... 13 1.5 Some Special Integrals . . 16 1.5.1 Asymptotic Series 17 1.5.2 Gaussian Integrals 18 1.5.3 Error Functions . . 20 1.5.4 Gamma Functions 22 1.5.5 Bessel Functions 24 2 Vector Analysis 27 2.1 Vectors ... . . . . . . . . . . 27 2.1.1 Dot Product and Norm 28 v CONTENTS 2.1.2 Cross Product 2.1.3 Vector Triple . 2.2 Vector Algebra . . . . 2.2.1 Differentiation of Vectors 2.2.2 Kinematics . . . . . . . 2.2.3 Line Integral . . . . . . . 2.2.4 Three Basic Operators .. 2.2.5 Son1e Important Theorems 2.3 Applications . . . . . . . . . . 2.3.1 Conservation of 1vlass 2.3.2 Saturn's Rings 3 Matrix Algebra 3.1 :rviatrix .... 3.2 Determinant. 3.3 Inverse . . . . 3.4 :rviatrix Exponential. 3.5 Hermitian and Quadratic Forms 3.6 Solution of linear systems 4 Complex Variables 4.1 Complex Numbers and Functions . 4.2 Hyperbolic Functions . 4.3 Analytic Functions 4.4 Complex Integrals . . 5 Ordinary Differential Equations 5.1 Introduction . . . . . 5.2 First Order ODEs ... 5.2.1 Linear ODEs .. 5.2.2 Nonlinear ODEs 5.3 Higher Order ODEs .. 5.3.1 General Solution 5.3.2 Differential Operator . 5.4 Linear System ...... . 5.5 Sturm-Liouville Equation vi 5.5.1 Bessel Equation ........ . 5.5.2 Euler Buckling . . . . . . . . . 5.5.3 Nonlinear Second-Order ODEs 6 Recurrence Equations 6.1 Linear Difference Equations 6.2 Chaos and Dynamical Systems 6.2.1 Bifurcations and Chaos 6.2.2 Dynamic Reconstruction. 6.2.3 Lorenz Attractor .. 6.3 Self-similarity and Fractals ... 7 Vibration and Harmonic Motion 7.1 Undamped Forced Oscillations 7.2 Damped Forced Oscillations . 7.3 Normal Ivlodes . . . . . . . . 7.4 Small Amplitude Oscillations 8 Integral Transforms 8.1 Fourier Transform 8.1.1 Fourier Series . . 8.1.2 Fourier Integral . 8.1.3 Fourier Transform 8.2 Laplace Transforms. 8.3 ~avelet . . . . . . . . . . 9 Partial Differential Equations 9.1 First Order PDE 9.2 Classification 9.3 Classic PDEs . . 10 Techniques for Solving PDEs 10.1 Separation of Variables . 10.2 Transform l1ethods ... . 10.3 Similarity Solution ... . 10.4 Travelling ~ave Solution . vii 10.5 Green's Function 10.6 Hybrid Method . 11 Integral Equations 11.1 Calculus of Variations ..... . 11.1.1 Curvature . . . . . . . . . 11.1.2 Euler-Lagrange Equation 11.1.3 Variations with Constraints 11.1.4 Variations for l1ultiple Variables 11.2 Integral Equations . . . . . . . . 11.2.1 Linear Integral Equations 11.3 Solution of Integral Equations . 11.3.1 Separable Kernels . . 11.3.2 Displacement Kernels 11.3.3 Volterra Equation 12 Tensor Analysis 12.1 Notations .. 12.2 Tensors . . . 12.3 Tensor Analysis . 13 Elasticity 13.1 Hooke's Law and Elasticity 13.2 l1axwell's Reciprocal Theorem 13.3 Equations of l1otion . . . . . 13.4 Airy Stress Functions .... 13.5 Euler-Bernoulli Beam Theory 14 Mathematical Models 201 14.1 Classic l1odels . . . . . . . . . . . . . . . . 201 14.1.1 Laplace's and Poisson's Equation . . 202 14.1.2 Parabolic Equation . . 202 14.1.3 Wave Equation . . . . . . 203 14.2 Other PDEs . . . . . . . . . . . . 203 14.2.1 Elastic Wave Equation . . 203 14.2.2 ltlaxwell's Equations . 204 viii CONTENTS 14.2.3 Reaction-Diffusion Equation. 14.2.4 Fokker-Plank Equation 14.2.5 Black-Scholes Equation . 14.2.6 Schrodinger Equation .. 14.2.7 Navier-Stokes Equations . 14.2.8 Sine-Gordon Equation 15 Finite Difference Method 209 15.1 Integration of ODEs . . . 209 15.1.1 Euler Scheme . . . 210 15.1.2 Leap-Frog Jviethod . 212 15.1.3 Runge-Kutta Jviethod . 213 15.2 Hyperbolic Equations . . . . . 213 15.2.1 First-Order Hyperbolic Equation . 214 15.2.2 Second-Order Wave Equation . 215 15.3 Parabolic Equation . . 216 15.4 Elliptical Equation . . 218 16 Finite Volume Method 221 16.1 Introduction . . . . . . 221 16.2 Elliptic Equations . . 222 16.3 Parabolic Equations . 223 16.4 Hyperbolic Equations . 224 17 Finite Element Method 227 17.1 Concept of Elements . . . . . . . . 228 17.1.1 Simple Spring Systems . . . 228 17.1.2 Bar and Beam Elements . . 232 17.2 Finite Element Formulation . 235 17.2.1 Weak Formulation . 235 17.2.2 Galerkin Jviethod . 236 17.2.3 Shape Functions . . . 237 17.3 Elasticity . . . . . . . . . . 239 17.3.1 Plane Stress and Plane Strain . . 239 17.3.2 Implementation . . 242 17.4 Heat Conduction . . 244 ix CONTENTS CONTENTS 17.4.1 Basic Formulation . . . . . . . . . . . 244 17 .4.2 Element-by-Element Assembly . . . . 246 17.4.3 Application of Boundary Conditions . 248 17.5 Time-Dependent Problems . . . 251 17.5.1 The Time Dimension. . . . . . 251 17.5.2 Time-Stepping . . . . . . . . . 253 17.5.3 1-D Transient Heat Transfer . . 253 17.5.4 Wave Equation .. . 254 18 Reaction Diffusion System 257 18.1 Heat Conduction Equation . 257 18.1.1 Fundamental Solutions . . 257 18.2 Nonlinear Equations . . . . 259 18.2.1 Travelling Wave . . . 259 18.2.2 Pattern Formation . . 260 18.3 Reaction-Diffusion System . . 263 19 Probability and Statistics 267 19.1 Probability . . . . . . . . . . . . . . . 267 19.1.1 Randomness and Probability . 267 19.1.2 Conditional Probability . . . . 275 19.1.3 Random Variables and Ivloments . 277 19.1.4 Binomial and Poisson Distributions. . 281 19.1.5 Gaussian Distribution . . . . . 283 19.1.6 Other Distributions . . . . . . 286 19.1.7 The Central Limit Theorem . . 287 19.2 Statistics . . . . . . . . . . . . . . . 289 19.2.1 Sample Ivlean and Variance . 290 19.2.2 Iviethod of Least Squares . 292 19.2.3 Hypothesis Testing . . 297 A Mathematical Formulas 311 A.1 Differentiations and Integrations . 311 A.2 Vectors and Matrices . . 312 A.3 Asymptotics . 314 A.4 Special Integrals . . . . 315 X
important for the career
Thanks.Great book.
Thanks. Can you find Mathematical Proofs: A Transition to Advanced Mathematics (3rd Edition)
by Gary Chartrand, Publisher: Pearson; 3 edition (September 27, 2012), ISBN-10: 0321797094?
by Gary Chartrand, Publisher: Pearson; 3 edition (September 27, 2012), ISBN-10: 0321797094?
Comments